The scaling of embedded collisionless reconnection

نویسندگان

  • M. A. Shay
  • J. F. Drake
  • B. N. Rogers
چکیده

The scaling of the reconnection rate is examined in situations in which the equilibrium current supporting a reversed magnetic field has a spatial scale length that is much greater than all nonmagnetohydrodynamic ~non-MHD! kinetic scales. In this case, denoted as embedded reconnection, the narrow non-MHD region around the x-line where dissipation is important is embedded inside of a much larger equilibrium current sheet. In this system, the magnetic field just upstream of this non-MHD region, Bd , changes significantly during the reconnection process. This wide equilibrium current sheet is contrasted with the very thin equilibrium current sheets of width c/vpi used in previous simulations to establish the importance of the Hall term in Ohm’s law in allowing fast reconnection in large scale collisionless systems. In the present study we lay out a procedure for determining Bd directly from simulation data and use this value to renormalize the reconnection rate using Sweet–Parker-like scaling arguments. Using two-dimensional two-fluid simulations, we find that the time evolution of the reconnection process can be broken into two phases: A developmental phase that is quite long and strongly dependent on system size and presumably the dissipation mechanisms, and a fast asymptotic phase in which the flow velocity into the x-line is on the order of 0.1 of the Alfvén speed based on Bd . The reconnection rate during the asymptotic phase is independent of system size and the majority of island growth and flux reconnection occurs during this phase. The time to reconnect a significant amount of magnetic flux is roughly consistent with solar flare timescales. © 2004 American Institute of Physics. @DOI: 10.1063/1.1705650#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The scaling of collisionless, magnetic reconnection for large systems

Hybrid simulations with electron inertia, along with analytic scaling arguments, are presented which demonstrate that magnetic reconnection remains Alfv6nic in a collisionless system even as the macroscopic scale length of the system becomes very large. This fast reconnection is facilitated by the whistler physics present near the x-line. The reconnection rate is found to be a universal constan...

متن کامل

Scaling of asymmetric Hall magnetic reconnection

[1] The scaling of the reconnection rate and ion and electron outflow speeds with upstream magnetic field strengths and plasma mass densities during asymmetric collisionless (Hall) reconnection without a guide field is studied using two-dimensional two-fluid simulations. The results agree with a recent theory by Cassak and Shay (2007). It is found that the normalized reconnection rate is on the...

متن کامل

Theory and simulations of the scaling of magnetic reconnection with symmetric shear flow

The scaling of magnetic reconnection in the presence of an oppositely directed sub-Alfvénic shear flow parallel to the reconnecting magnetic field is studied using analytical scaling arguments and two-dimensional two-fluid numerical simulations of collisionless (Hall) reconnection. Previous studies noted that the reconnection rate falls and the current sheet tilts with increasing flow speed, bu...

متن کامل

Magnetic Reconnection for Coronal Conditions: Reconnection Rates, Secondary Islands and Onset

Magnetic reconnection may play an important role in heating the corona through a release of magnetic energy. An understanding of how reconnection proceeds can contribute to explaining the observed behavior. Here, recent theoretical work on magnetic reconnection for coronal conditions is reviewed. Topics include the rate that collisionless (Hall) reconnection proceeds, the conditions under which...

متن کامل

The scaling of forced collisionless reconnection

We present two-fluid simulations of forced magnetic reconnection with finite electron inertia in a collisionless two-dimensional slab geometry. Reconnection in this system is driven by a spatially localized forcing function that is added to the ion momentum equation inside the computational domain. The resulting forced reconnection process is studied as a function of the temporal and spatial st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004